SENSOR DIAPHRAGM UNDER INITIAL TENSION: NONLINEAR INTERACTIONS DURING ASYMMETRIC OSCILLATIONS

Xinhua Long
State Key Laboratory of Mechanical System & Vibration, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China, Author for correspondence (PH: (86-21)342-6664, Email: xhlong@sjtu.edu.cn)

Miao Yu and Balakumar Balachandran
Department of Mechanical Engineering, University of Maryland, College Park, MD 20742-3035.

ABSTRACT

In this article, investigations into the nonlinear asymmetric vibrations of a pressure sensor diaphragm under initial tension are presented. A comprehensive mechanics model based on a plate with in-plane tension is presented and the effect of cubic nonlinearity is studied on the nonlinear asymmetric response when the excitation frequency is close to the natural frequency of an asymmetric mode of the plate. The obtained results show that in the presence of an internal resonance, depending on the initial tension, the response can have not only the form of a standing wave but also the form of a traveling wave. The results of this work should be relevant to diaphragm-type structures used in micro-scale sensors including pressure sensors.

1. INTRODUCTION

Thin film diaphragm structures are frequently used in silicon piezoresistive sensors, capacitive sensors, and fiber-optic sensors [1]-[3]. One can detect the vibrations of these diaphragm structures through the displacements of the diaphragm structures. The sensor sensitivity, bandwidth, and linearity are directly related to the structural behavior of the diaphragm. Due to thermal expansion and mismatch between adjacent wafers, the wafer-bonding operations may introduce in-plane residual stresses in the thin film diaphragm structures. In a typical silicon pressure sensor, the diaphragm is a stretched thin structure and the initial tension can be as large as 1 GPa [4]. The diaphragm vibrations are usually analyzed by using membrane equations. Static membrane equations have also been used in other sensor designs [1]-[3]. However, as pointed out in the recent work of Yu and Balachandran [5], a membrane model is not always the most appropriate one. Sheplak and Dugundji [6] carried out static analysis of a clamped circular plate under initial tension and studied the transition range from plate behavior to membrane behavior in terms of the tension parameter k. Su, Chen, Roberts, and Spearing [7] extended this work to analyze large deflections of a pre-tensioned annular plate bonded with a rigid boss under axisymmetric pressure in the presence of in-plane loading. In the work of Yu, Long, and Balachandran, the work presented in [5] is extended to the dynamic case and the tradeoffs between sensitivity, bandwidth, and dynamic range are addressed through a nonlinear analysis.

In most of early research efforts on the dynamic response of a diaphragm structure, harmonic and symmetric excitations are considered. For studying asymmetric responses, Sridhar, Mook, and Nayfeh [9] derived a general solvability condition for nonlinear interactions in the vibrations of a clamped circular plate. Yeo and Lee [10] re-examined a primary resonance state studied by Sridhar et al. and corrected the modulation equations derived by Sridhar et al. The results...
indicate the steady-state response can have not only the form of a standing wave but also the form of a traveling wave. In this paper, the authors follow the work presented in references [9-11] and build on their earlier efforts [5, 8], and carry out a nonlinear analysis of the asymmetric vibrations of a pressure sensor diaphragm under initial tension.

The rest of this article is organized as follows. In the second section, the model of a plate with in-plane tension is provided. In the third section, the equations governing the nonlinear asymmetric vibrations are derived when the system experiences a primary resonance excitation of the one-one mode. Numerical results for three different diaphragm structures are presented in the fourth section. Finally, some remarks are collected together and presented.

2. MODEL DEVELOPMENT AND SYSTEM EQUATIONS

In Figure 1, a clamped, circular diaphragm of radius of \(a \) and thickness \(h \) is illustrated. The Young's modulus of elasticity and Poisson's ratio of the diaphragm material are denoted by \(E \) and \(v \), respectively. The initial tension per unit length applied to the diaphragm is represented by \(N_0 \).

\[
\rho h \frac{\partial^2 w}{\partial t^2} + D \nabla^4 w - N_0 \nabla^2 w = \frac{E h}{12(1-v^2)} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial w}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial w}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \\
-2\left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial w}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 w}{\partial \theta^2} \right) \frac{1}{r} \frac{\partial^2 w}{\partial \theta^2} - 2\mu \frac{\partial w}{\partial t} + f(r, \theta, t)
\]

where \(r \) is the radial distance from the center, \(\theta \) is the angular coordinate, \(w(r, \theta; t) \) is the transverse displacement, and \(\mu \) is the damping coefficient.

For convenience, the authors rewrite these equations in terms of nondimensional variables, denoted by asterisks, which are defined as follows:
\[r = ar^*, \quad t = a^2 \sqrt{\frac{\rho h}{D}} t, \quad w = \frac{h^2}{a} w^*, \]
\[u = \frac{h^4}{a^4} u^*, \quad v = \frac{h^4}{a^4} v^*, \quad N_0 = \frac{a^2}{D} N_0^*, \]
\[\mu = 24(1-v^2) \sqrt{\rho h^2 D} \mu^*, \]
\[f = \frac{12(1-v^2) D h^4}{a^2} f^*, \quad \Phi = E h^5 \Phi^* \]

After substituting Eq. (3) into (1) and (2) and dropping the asterisks in the result, one can obtain

\[\frac{\partial^2 w}{\partial t^2} + \nabla^4 w - N_0 \nabla^2 w = \epsilon \left[\frac{\partial^2 w}{\partial r^2} \left(\frac{1}{r^2} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial \theta^2} \right) \right] + \frac{\partial^2 \Phi}{\partial r^2} \left(\frac{1}{r^2} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial w}{\partial \theta^2} \right) - 2 \left(\frac{1}{r^2} \frac{\partial \Phi}{\partial r} - \frac{1}{r^2} \frac{\partial \Phi}{\partial \theta} \right) \left(\frac{1}{r^2} \frac{\partial \Phi}{\partial r} - \frac{1}{r^2} \frac{\partial \Phi}{\partial \theta} \right) - 2 \mu \frac{\partial w}{\partial t} + f(r, \theta, t) \]

\[\nabla^4 \Phi = \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(\frac{1}{r^2} \frac{\partial \Phi}{\partial r} - \frac{1}{r^2} \frac{\partial \Phi}{\partial \theta} \right) - \frac{\partial^2 \Phi}{\partial r^2} \left(\frac{1}{r^2} \frac{\partial w}{\partial r} + \frac{1}{r^2} \frac{\partial w}{\partial \theta^2} \right) \right] \]

where
\[\epsilon = \frac{12(1-v^2) h^2}{a^2} \]
\[\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} \]

The relationships amongst \(\Phi \), \(w \), and the in-plane displacements \(u \) and \(v \) are given by

\[e_1 = \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r} \frac{\partial^2 \Phi}{\partial r^2} = \frac{\partial^2 \Phi}{\partial r^2} - v \frac{\partial \Phi}{\partial r} \]
\[e_2 = \frac{1}{r} \frac{\partial \Phi}{\partial r} - \left(\frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} \right) \]
\[\frac{1}{2} \gamma^2 = (1+v) \left(\frac{1}{r} \frac{\partial \Phi}{\partial r} - \frac{\partial \Phi}{\partial r} \right) \]

Making use of equations (8-14), one can obtain the following two conditions on \(\Phi \):

\[\frac{\partial^2 \Phi}{\partial r^2} - \left(\frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial \Phi}{\partial \theta^2} \right) = 0 \]

at \(r = 1 \)

\[\frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + 2 + \frac{v}{r^2} \frac{\partial \Phi}{\partial r} - \frac{3 + v}{r^2} \frac{\partial \Phi}{\partial r} = 0 \]

at \(r = 1 \)

\[w(r, \theta, t) \approx (\eta(t) \cos n\theta + \zeta(t) \sin n\theta) \phi(r) \]

where

\[\phi(r) = k_n \left[J_n(\beta_n r) - \frac{J_n(\beta_n)}{I_n(\alpha_n)} \right] I_n(\alpha_n r) \]

The coefficient \(\alpha_n \) and \(\beta_n \) are determined by characteristic equations

\[I_n(\alpha_n) J_n(\beta_n) - J_n(\beta_n) I_n(\alpha_n) = 0 \]

and \(k_n \) is determined by \(1 = \int_0^1 r \phi(r) \phi(r) dr \).

On substituting Eq. (18) into Eq. (5), the result is

\[\nabla^4 \Phi = \frac{1}{2} (\eta^2 + \zeta^2) \chi_n(r) + \left[\frac{1}{2} (\zeta^2 - \eta^2) \cos 2n\theta - \eta \zeta \sin 2n\theta \right] \chi_n(r) \]

where
\[\chi_n = \frac{n^2}{r^2} \left(r \phi' - \phi \right)^2 - \frac{\phi'}{r^2} \left(r \phi' - n^2 \phi \right) \]
The solution of equation (20) that satisfies the boundary conditions can be

\[\Phi = \frac{1}{2} \psi_1(r)(\eta^2 + \zeta^2) + \left[\frac{1}{2} (\eta^2 - \zeta^2) \cos 2\theta - \eta \zeta \sin 2\theta \right] \psi_2(r) \]

(22)

where \(\psi_1 \) and \(\psi_2 \) can be expanded in terms of the eigenfunctions of

\[\int_0^r \left[J_{2n}(\lambda r) + c_{2n} / c_{1n} I_{2n}(\lambda r) \right] \chi_i(r) \dr = \int_0^r \left[J_{2n}(\lambda r) + c_{2n} / c_{1n} I_{2n}(\lambda r) \right] \psi_i(r) \dr \]

(27)

After substituting Eqs. (18) and (22) into Eq. (4), multiplying the outcome with \(r \phi(r) \cos \theta \) and \(r \phi(r) \sin \theta \), respectively, and integrating the results from \(\theta = 0 \) to \(\theta = 2\pi \) and \(r = 0 \) to \(r = 1 \), one can obtain the coupled oscillator equations

\[\ddot{\eta} + \omega^2 \eta = -2 e \mu \eta' - e \alpha_1 \eta^2 \zeta - e \alpha_3 \eta^2 \zeta^3 - e \alpha_6 \eta^2 \zeta^3 + e f \cos \Omega t \]

(28a)

\[\ddot{\zeta} + \omega^2 \zeta = -2 e \mu \zeta' - e \alpha_3 \zeta^2 - e \alpha_6 \zeta^2 - e \alpha_5 \eta^2 - e \alpha_6 \eta^3 \]

(28b)

where

\[\alpha_0 = \alpha_3 = \alpha_4 = \alpha_6 = \alpha_7 = 0 \]

\[\mu = \int_0^r \mu \phi^2 \dr \quad \text{and} \quad f = \int_0^r r \phi \dr \]

(30)

4. NUMERICAL RESULTS

As a representative case, a Mylar diaphragm with the Young’s modulus of elasticity \(E = 3.45 \times 10^6 \)
Pa, density $\rho = 1.29 \times 10^3$ kg/m3, and Poisson’s ratio $\nu = 0.41$ is considered. For a diaphragm radius of 1.75 mm and thickness values of 40 μm, 30 μm, and 20 μm, the dependence of the 1-1 mode natural frequency on the tension parameter k is shown for each of these cases in Figure 2. The natural frequencies increase as the tension parameter k is increased. It is noted that it is possible to get the same 1-1 mode natural frequency (22.87 kHz) as that for a diaphragm with $h=40$ μm and $k=0$ by choosing the appropriate tension parameters. As pointed out in Figure 2, the tension parameter values are $k=4.6$ and $k=9.12$, for $h=30$ μm and $h=20$ μm, respectively. The structural and system parameters for the previously mentioned diaphragm structures are provided in Table 1.

<table>
<thead>
<tr>
<th>Cases</th>
<th>h (μm)</th>
<th>a (mm)</th>
<th>k</th>
<th>f_{11} (Hz)</th>
<th>η_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>1.75</td>
<td>0</td>
<td>22875</td>
<td>198.9</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>1.75</td>
<td>4.6</td>
<td>22875</td>
<td>194.3</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>1.75</td>
<td>9.12</td>
<td>22875</td>
<td>177.2</td>
</tr>
</tbody>
</table>

In Figure 3, the frequency response curves obtained by using AUTO97 [14] are presented to illustrate the response of structure corresponding to case 1 of Table 1. The corresponding mode has one nodal diameter and no other nodal circle except the one at the boundary. In Figure 3, the branches labeled SS, ST, US, and UT correspond to the stable standing wave, stable traveling wave, unstable standing wave, and unstable traveling wave, respectively. The stable branches and unstable branches are denoted by solid lines and dashed lines, respectively. From Figures 4 and 5, one can find the response of diaphragm transform from a standing wave into a traveling wave with the increase of excitation frequency. The bifurcation point is located at (22975 Hz, 3.43×10^{-6} m). As the excitation frequency increases, there is one unstable standing wave branch and one stable traveling wave branch in the frequency range (22975 Hz, 23264 Hz). Following that, the response of diaphragm becomes complicated and there are multiple unstable branches and multiple stable branches in the frequency range (23265 Hz, 24312 Hz). When the
excitation frequency reaches 24313Hz, there is one stable standing wave branch and multiple unstable branches.

In order to show the deflection of the diaphragm, the responses observed at excitation frequencies of 22500Hz and 23000Hz are considered. The corresponding results obtained by time domain simulations are presented in Figure 4 and 5 to illustrate the stable responses of the diaphragm over one period of excitation. A standing wave is shown in Figure 4, where one can observe a nodal line in each subplot. In Figure 5, a clockwise rotating traveling wave is shown. The responses shown in Figures 4 and 5 correspond to a primary resonance excitation.

Figure 4. Deflections of the diaphragm in Case 1 over one period of excitation when $\Omega/2\pi = 22500$Hz and $p=100$Pa.
To look into the initial-tension effects on the response of diaphragm, the frequency-response curves obtained for Cases 2 and 3 of Table 1 are presented in Figure 6 and 7. Comparing Figure 6 and 7 with Figure 3, one can find that the branches SS, ST, US, and UT are similar to those of Figure 3. The differences are in the locations of the bifurcation points. In Cases 2 and 3, the first bifurcation points are located at (22998Hz, 3.82×10⁻⁶m) and (23024Hz, 4.52×10⁻⁶m), respectively, as the excitation frequency is increased. One unstable standing wave branch and one stable traveling wave branch are located in the frequency ranges (23000Hz, 23352Hz) and (20325Hz, 23482Hz) in Cases 2 and 3, respectively.

Figure 5. Deflections of the diaphragm in Case 1 over one period of excitation when $\Omega/2\pi = 23000\text{Hz}$ and $p=100\text{Pa}$.

Figure 6. Variations of the diaphragm response
amplitudes with respect to the excitation frequency for Case 2 with $k=4.6$ and pressure $p=100\text{pa}$, unstable, stable branch.

![Graph](image1.png)

Figure 7. Variations of the diaphragm response amplitudes with respect to the excitation frequency for Case 3 with $k=9.12$ and pressure $p=100\text{pa}$, unstable branch, stable branch.

![Graph](image2.png)

Figure 8. Variations of the diaphragm response amplitudes with respect to the excitation pressure for Case 3 with $k=9.12$ and $\Omega=23.5\text{kHz}$, unstable branch, stable branch.

To investigate nonlinear interactions with respect to the excitation pressure level, the response curves obtained in Case 3 are shown in Figure 8 when the excitation frequency is close to the 1-1 mode natural frequency. From this figure, one can find that stable standing waves occur in the “small” range (0, 20 Pa). With increase of excitation pressure, the responses of diaphragm become complicated and there are multiple stable branches and multiple unstable branches in the range (20 Pa, 100 Pa).

4. CLOSURE

In this effort, the nonlinear asymmetric vibrations of a pressure sensor diaphragm under initial tension are investigated. A comprehensive mechanics model based on a plate with in-plane tension is presented and the effect of cubic nonlinearity is studied on the nonlinear asymmetric response when the excitation frequency is close to the natural frequency of an asymmetric mode of the plate. The obtained results show that in the presence of an internal resonance, the bifurcation locations depending on the initial tension. The response can have not only the form of a standing wave but also the form of a traveling wave.

REFERENCES

